
Page 1

High‐Speed Network 
Communica7on on the Cray XT 

Kitrick Sheets 
n8851@cray.com 

Page 2

Agenda

  XT communication overview
  Portals overview
  Interconnect specifics
  Interesting communication patterns
  Wrap-up

Page 3

XT Communication Stack

Portals NAL 

SSIP 
Seastar 
NIC 

Portals API 

MPI  shmem 

Lustre 

GA 

TCP/IP 

Addi7onal APIs 

BEER 

pkAPI DVS 

Page 4

Portals
  Network communication API developed by Sandia

•  Data movement is between ‘portal’s into user address spaces
•  Supports zero-copy, OS bypass, and Application bypass
•  Supports one-sided communication (Get and Put)

  Primary method of communication on XT interconect
•  Cray extensions for:

  CLE optimization
  Interrupt management improvement
  Multi-core nodes
  Atomic operations (GetPut, GetAdd, CGetPut)
  Network resiliency (Basic End-to-End Reliability)

  Portals Assumptions
•  Network is reliable and deterministic
•  Guaranteed in-order transmission of messages between NID/PID pairs

Page 5

Portals Structure

•  Portal Table
–  Anchor table for registered

portals users
•  Event Queue

–  Completion/notification
•  Match Entries

–  Filters for in-bound
RDMA operations

•  Memory Descriptors
–  Describe memory

segments attached to
match entries

… 

… … 

Page 6

Portals API

•  Portal Table
–  PtlNIInit(), PtlFini()

•  Event Queue
–  PtlEQAlloc()

•  Match Entries
–  PtlMEAttach()

•  Memory Descriptors
–  PtlMDAttach(),

PtlMDBind()
•  Data Movement

–  PtlGet(), PtlPut()

… 

… … 

Page 7

Portals Data Transfer

… 

… … 

Page 8

Seastar Network Access Layer

  Provides bridge between portals API and NIC
  Manages transmit and receive state for in-flight portals

requests
  Works in conjunction with portals library for message

validation and matching
  Translates logical requests into DMA programs to be

consumed by the NIC

Page 9

User Transmit Request Flow

PtlMDBind() 

PtlPut(md, …) 

nal_send()  encode_tx() 

USER 

KERNEL 

NIC 

PtlEQAlloc() 

write_event() 

Page 10

Providing reliable communication

  Basic End-to-End Reliability (BEER) protocol
  Host-resident software layer between NIC and portals
  Provides recovery for various message transmission

issues
•  CAM overflow
•  OS resource exhaustion
•  Flow control for tx/rx imbalance and forward progress
•  Cleanup for orphaned transmits (remote node failures, etc.)
•  Warm reboot of nodes

  Message sequence numbers used to manage flow
between NID/PID pairs

Page 11

XT System Architecture

SMW 

I/O Node 

Login Node 
Boot Node 
Network Node 

Compute Node 

Network 

Network 

Page 12

Seastar connection to CPUs

HT  Socket 1 Socket 0 

Memory  Memory 

Page 13

Network Interface - Seastar

Router 

 Packet D
M
A
 Engine 

HT 

HT 

PPC 

HT2LB 

HT 

Page 14

Embedded Processor Complex

  PPC 440 Processor
  384KB on-board RAM
  Manages DMA engine

•  Interrogates incoming requests and coordinates with host for data
placement

•  Keeps tx engine fed
  Provides RAS functionality

•  Warm reboot
•  Host failure recovery
•  Maintenance interface communication
•  Seastar fault detection and recovery

Page 15

Seastar Router
  Connects the seastar to the 3D torus network

•  6 network ports
•  1 host port

  Supports up to 32K nodes
  Each port supports 3.25GB/s bandwidth
  Supports cut-through routing
  Basic flow control unit is a flit

•  Flit contains 64 data bits + control bits
  Flits are combined into network packets

•  Packets consist of a header flit and up to 8 data flits
  Hardware flow control is credit based

•  Credits are replenished when receiving router accepts flit

Page 16

Seastar Router

LUT 

LUT = Lookup Table: routes inbound request through  
                switch to des7na7on channel 

Page 17

Seastar DMA Engine

  Transmit Engine
•  Single transmit DMA engine
•  Responsible for translation of outbound block transfers into

network flits
•  PPC manages 32 entry TX DMA queue
•  Price of tx = 1 credit / flit

  Receive Engine
•  Fed by 512 flit rx data fifo
•  Content Addressable Memory (CAM) maps remote source to each

of the 256 rx queues
•  On CAM match, packet is sent to matching rx DMA stream
•  Router credited when packet is moved from rx data fifo

Page 18

Seastar Transmit Machinery

… 

PPC 

Router 

Page 19

Seastar Receive Machinery

(256x8 entries) 
…  … 

Router 

… 

Page 20

Key DMA Parameters

  TX DMA
•  Single transmit FIFO
•  Requests are consumed in the order presented
•  PPC responsible for feeding host requests into engine
•  Transmit possible only when credits available at target router

  RX DMA
•  Single receive FIFO
•  Small messages (<= 16 bytes) handled directly from FIFO
•  Large messages require CAM for DMA
•  PPC/host intervene on CAM miss
•  Router credits returned when packet moves from FIFO

Page 21

… 

… 

… … 

Normal message reception

Page 22

… 

… 

…  … 

CAM Miss

PPC 

Seastar 
Driver 

Page 23

… 

… 

…  … 

CAM Overflow

PPC 

Seastar 
Driver 

Page 24

Problem Scenario 1 – CAM thrash

  All-to-one
•  Actually, > 256 to one

  Effective throughput of the seastar decreases in direct
proportion to the sender/receiver ratio

•  CAM overflows induce additional chatter due to:
  Interrupt/nak sequence
  Message retransmission
  Unused data flowing through rx data fifo

  No fairness in CAM allocation scheme
•  CAM slots are ‘sticky’, but can be resourced at the end of a

message.

Page 25

Scenario 2 – tx/rx imbalance

  All-from-one (e.g., GET storm)
•  Unrelated to CAM issues

  GET requests arrive as single-packet requests, which do
not require the CAM

•  Processed directly from rx fifo
•  Not throttled by CAM limit of 256 concurrent sources

  REPLY DMAs fill the tx fifo and requests begin to backup
  BEER initiates flow control when transmit resources

become scarce

Page 26

Scenario 3 – tx interference

  Transmit requests serialized through Seastar
  Large tx stream from one PE can monopolize resources
  Transmit queue is not prioritized

•  Don’t initiate many large low-priority (async) requests followed by a
small, high priority request (e.g., barrier)

  Must consider asynchronous tx activity
•  Lustre buffer flushes
•  Out-of-band requests (RDMA pulls)

Page 27

Enhancements for hex-core and
beyond

  CAM Swapping
•  Firmware enhancements to manage over commitment of CAM
•  Similar in concept to TLB management
•  Eliminates many fault-related retransmissions

  Efficiency improvements to on-node transfers
•  Less contention for local resources
•  Reduced back-pressure on network

  Core specialization
•  Isolates jitter-related processing (e.g., system services, daemons,

etc.)

Page 28

Summary

  Forward progress on the network is key
•  Stalls/delays at one node can ripple through the network.

  All-to-one communication comes at a price
•  CAM pressure can reduce effective throughput

  Tx and rx communication paths have unique
characteristics

  Out-of-band communication can impact application
  Be mindful of communication resource exhaustion costs as

application scales

